
Semantic Annotation of Computational
Components

Peter Vanderbilt’ and Piyush Mehrot,ra2

AMTI”, NASA Ames Research Center: M/S T27A-2. Moffett Field, C-4 94035
pvQnas . nasa. gov

Piyush .Meh.otraQnasa. gov

2 1 \ -A A-4 Aiiies Research Center, FvfS 258-3, Mofiett Fieid, CA 94035

aper describes a methodology to specify machine-
processabie semantic descriptions of computationai components to en-
ab!e them t o be shwed ~ n d remed A p a r t i c ~ h r focus af this scheme is

composition of such components into simple work-

1 Introduction

on of the Semantic Grid is to enable “an infrastruc-
ture where all resources. including services, are adequately described
in a form that is machine-processable“[l]. This paper describes a
methodology to specify machine-processable semantic descriptions
of computational components.

The focus of the CRADLE project is to represent the semantics
of workflow components; or so called %oo~s,~’ with the ideal goal of
enabiing automatic generation of semantically correct tvorkflows. iz
prototype of CRADLE has been implemented including a repository
for tool descriptions, a plan (or workflow) generation program and
a prototype pian execution system While the focus of CRADLE is
on tools, we think that similar techniques apply to data collections
and web/grid services.

In general; a tool is a program, component or service that com-
putes one or more outputs from one or more inputs. Some tools
require significant computation such as a simulation that computes

This woik is supported by the KJS.4 -4d~znced Supercomputing Division iinder
Task Order A61812D (ITOP Contract DTTS59-99-D-00437lTO #.461812D) with
Advanced Management Technology Incorporated (AMTI).

e

4

a flow field around some object or one that computes thermody-
namic propert,ies given a flow. However) tools also include format
translators, data extraction functions, data analysis and visualiza-
tion programs.

In order to manage the growing number of these tools and to
share them, it is desirable to put tool descriptions in web-accessible,
searename reposiiur-iw. Associated yith s d i t d XXX I-E ~ ~ I ~ X X X -

tioii about what it does, Iiox to riiii it, who created it, its properties
and so on.

The main focus of our research is to find ways to express the
semantics of a tool in a machine-readable way. Semantic tool de-
scriptions could be used to narrow t,he set of tools that a user must
select, from to solve a particular problem. Further, we are interested
in plans, collections of interconnected tools, and how to use semantic
descriptions to ensure the well-formedness of a plan and to determine
its semantics. Plans are a kind of workflow that have been restricted

Our goal is to facilitate plan generation, which is a process that,
creates a pian whose execution produces a specified result giyen spec-
ified inputs. Plan generation uses tool descriptions to determine fea-
sible combinations of tools. In order to push t.he research, we take
as the ideal goal the automatic ("hands-off") generation of plans.
However, we recognize that, for various reasons, user input may be
needed to select. among several combinations of tools.

This paper describes CRADLE'S dataspace approach. A datas-
pace is an abstraction that allows one to provide meaningful, com-
pound names to various properties of real or logical entit,ies. We
present horn- this approach can be used to specify descriptions of
computational components and also to chain together these compo-
nents in semantically consistent ways to yield simplified workflows.

1 1 1

i- b u DAGS (directed azyc!ic graphs).

2 Tool and Problem Specifications

Consider the situation where a scientist is computationally investi-
gating the flow characteristics of a class of aerodynamic structures.
For a given syst,em of a body and external characteristics, there
may be several potential properties that could be calculated. Assume
there are tools that take various properties (radius, angle, velocity)

and generate datasets (such as meshes), t.ools t.ha.t, t.ake datasets t,o
other datasets (such as other meshes and flow simulations), tools
that analyze datasets (yielding floats, integers and booleans) and
tools that convert betmeen the different dataset formats used by
these tools.

The scientist needs a way to compose these tools depending on
vyllcLiL IS 6 , V G I L allu WGL 13 to he dc i ih t ed . Iii cji-dei> io do iliis, &ere
must be ways to describe tools and the prcb!ems that users want to
solve.

Consider a simplified example of a “body” whose properties in-
clude its geometry file, volume, mass, (average) densit?;, velocity and
momentum. A “problem” specifies which properties will be provided
(the “givens”) and which will be calculated (the “goals”). At differ-
ent times, there will be different sets of givens and goals. Assume
that the scientist has at his disposal the following “tools”:

,.a.,c ’ -:---.- .--..-I --1- L 1-

1. Three t d s fnr C&!Gtl!ltiCg e2ch cf nornentcrr,, docit : ; or X&SS of
a body, given the other two. (There is one tool for each imdaoixm).

_. L ~ t e tools for calculating each of average density,. mass or vol-
ume, given the other two.

3. A too! that takes a body’s geometry file and yields its volume.
4. A tool that calculates the mass and volume of a system of bodies,

? TL--

each with mass and momentum.

So how does one specify these tools and how would the scientist
specify what data he wants (given what data he has)?

In a programming language, a tool would be a method or func-
tion. In WSDL[5], such a tool would be a web service[41 operation. In
these two systems. the machine-readable aspects of a “tool” descrip-
tion are the types of its inputs and outputs. A type system ensures
that a composition of tools is consistent at the type level.

M%ile type correctness is required, it is not sufficient for our
purposes. For instance. the first three tools mentioned in item #l
above. take two floats and return a float (assuming velocity and
momentum are scalars) and are thus indistingiiishahle from the point
of view of the types. Of course, the problem is that the semantics
of each tool is not taken into account. Generally, the semantics of
a tool is expressed as a comment and/or is implied by the name of

the function and the names of its inputs. It is difficult, to effectively
reason about, information in this form.

Another possible method is to require that the function name
indicate the quantity being produced. Unfortunately, there may be
tools with more than one output. Item #4, above, is an example of
such a tool that. generates both mass and momentum.

6ne can associai,e one or IUOR ou'ipiit iiaiies ~ k h az~l; t d .
Eowever, there may be more than orie tool prodiicing the same out-
put. For instance, there are three tools yielding mass in our example.
WMe the types are different, one could imagine examples where the
types are the same. A way to solve this problem is to treat the input.
names as significant (as well as the output names).

While this approach goes a long way, there are still a few prob-
lems. One is t'hat a name alone may not adequately specify a quan-
tity and its representation. For instance, if a velocity-producing tool
and a velocity-using tool use different, units or formats, the tools

can compare names but only humans can ensure that the names are
used consistenti?. Thus it is important that each name lia\Te an as-
sociat.ed natural language description that, together Milth its t,ype,
unanbiguously describes the associated quantity and its format.

There is also a problem when two different users unintentionally
use the same term with different meanings. While it is possible for a
syst.em to detect conflicting definitions; it is betker to have a name
qualification scheme such that two independent people use differ-
ent qualifiers for the names they define. Examples of such schemes
include TJTJIDs, URIs, X-ML QNames and Java class names.

-4 related problem arises, for example, when one tool uses "widt.h"
while another uses "breadth" for the same concept. In t,his case, the
two tools will be deemed incompatible when really they are compat-
ible. What would help is a way to equate two names.

There is also a problem with the "flatness" of names. Consider a
simulation of several interact,ing physical bodies, each xi th velocity,
a mass and momentum. In this case, a simple name, like %docity," is
ambiguous, since each body has a velocity. One could use names like
"bl-ve1ocit.y" and "b2-velocity" but t,hen a tool taking "ve1ocit.y" as
an input will not apply. What is needed is a notion of compound
names, or paths. In the system above, the bodies could be named

will llot iiiteroperate, Basica!!j-, &L;- billla is 2 hmsn issue - the system

r

3

“b1” and -’b2” and their velocities would be named by .‘bl.velocitj“’
and %2.velocity” (where the period combines two names). Tools
apply as if universally quantified over paths, so the tool described
above also can take inputs “bl.velocity7’ and “bl.mass” and yield
“b 1 .moment um . ”

A final problem is illustrated by considering the computation of

“ z - e ~ ” przperties, all Ecats, but the tools wed to c o m p t e their
areas must be different. The issue is that property names alone do
not determine the semantics of the object of which they are a part.
Thus there needs to be a way to associate a tool with a class of
objects.

tho n-_n ,C -,,+,,,I,, -11: ---- D-AL 1 _-__- UL-:..l..i 77 ! < . - ~ - 1 ~ 1 . 7 1 .-- 1
”I)\ -I\u “I L G L V u I L I F > I G D a L l U G l L l p a c a . U L J b l l 1 l C h V G l l G l & l b ; M ‘ l U l i l l allu

3 The Dataspace Model

In this section, we describe an abstract model called the dataspace
rr?odel that addresses the issues cf the pre-vious seztim. Ekiefij;, a
dataspace is a tree-like structure with named slots as leaves. A slot,
C a i i be thought of as a piace where a data value can be deposited.
Dataspaces have types that imply a vocabulary of slot names and
t.heir sem-antic interdependencies. E x h tool is associated, vi2 2 rela-
tion called ”appliesTo,” with one type of dataspace. Logically when
a tool runs: it is passed a dataspace of the appropriate type; the tool
retrieves its inputs from certain slots and places its outputs in other
slots. Roughly, two tools can be composed only if they both have
the same “appliesTo” type and t,he names of the inputs of one are
among the names of the outputs of the other. We now discuss the
model in more detail.

A dataspace is used t,o model some real world or logical ent i ty ,
such as a physical body (of various shapes), a surface, a flow field,
a particle or a galaxy. An ent.ity can also be a composite t-hing like
a syst.em of several bodies or a flow interacting with t,he surface of
some structure.

A dataspace is made up of a coiiection of named slots each ca-
pable of holding one piece of information, like a float, an army of
floats or a filename. Each slot is either empt.y or filled and; when
filled, its content denotes one aspect of the entity being modeled. An
aspect is some parameter; attribute, propertmy or view of an entity.

Example of aspects are a body’s mass, velocity or a reference t,o a file
containing its geometry. Different aspects can be used for different
representations or units for t.he same propert,y.

It is possible that an aspect of an entity is itself a composite
entity, in which case the aspect is represented by another dataspace,
refered to as a subdataspace. In general a dataspace forms a tree
with named edges and siots at the ieaves. For exaiiipk, 8 ve l xk j -
aspect might be a vector modeied by a subdataspace xi th x, y and z
aspects. Similarly a syst,em ot-ith two bodies could be modeled as two
subdataspaces named “bl” 2nd “b2.” In t,his case, “b1.velocity.x”
names a slot that contains the x component of bl’s velocity.

Each slot or subdataspace is considered one aspect and is given
an aspect name. A compound name, like “bl.velocity.x,” is called an
aspect path.

Aspects are typically interdependent and: so, the values of cer-
tain slots can be computed from others. For example, a physical
body might ’nave aspects mass, geometry, velocity, voliliiie: aiierage
dezsity m d m~mentum. Given a.ny two of mass: velocity or momen-
tum, the third can be calculated. Volume; mass and density are in a
similar relationship and, presumably, volume can be computed from
geometry.

-4 dataspace type denotes a set of da.taspaces and is typically
associated wit,h some class of entities. A dat,aspace type defines a
vocabulasy of aspect names and their associated @pes and interpre-
tation. The type also denotes a set of constraints on the values of
aspects and their int,erdependencies. These semantic properties are
giveii explicit,ly by an associated description string or are implied by
the names of the type and its aspects. Essentially, t.he Q-pe name
becomes a proxy for these human-understood semantics.

Consider the following example definition

dataspace Body {
a s p e c t URL geometryFi le ;
a s p e c t F l o a t volume;
a s p e c t F l o a t mass;
a s p e c t F l o a t d e n s i t y ;
a s p e c t F l o a t v e l o c i t y ;
a s p e c t F1 o a t momentum ;

W’hile CR-4DLE actually uses an Xh4L syntax, a more convenient
syntax like this is better for explanatory purposes. This definition
defines a type named “Body” with six aspects. The first aspect is
named “geometryFile” and is of t,ype “TJRL.“ The remaining five
aspects are of type Float with names “volume,” “mass,” “density,”
“velocity” and L L m ~ m e n t ~ m . ” We assume “URL” and “Float” are
defined elsewhere. The interdependencies between aspects are im-
plied by the aspect names. -4 description string could be added to
the definition if further explanation was needed.

Each dataspace type definition defines a new, independent type.
Even if the aspects a.re identical, it is assllmec? thzt their irkerde-
pendencies are different, as im-plied by the name of the t,y-pe or its
description. For instance, t,here could be two type definitions with
ident.ica1 aspects, “height,” “weight” and “area,” but having differ-
ent names, “Rectangle” and “Ellipse.” They would denote different
t-ypes.

I ne LKAULL type system supports inheritance where inheri-
tance implies an %a” or subset relation - instances of a derived type
are instances of the base t.ype. A derived type has all the aspects of
the supertype and can add new aspects, refine existing aspects and
add additional constraints (between aspects). For example, Square
could be a subtype of Rectangle, adding the constraint that the
“height” and “width” aspects are the same. -4n aspect is refined if
the derived aspect’s type is a subtype of t,he base aspect’s type and if
azy description-implied constraints of the derived aspect impby the
corresponding constraints of the base aspect..

Sow- that the dataspace model has been described, we turn to
CRADLE tool descriptions, which use the dataspace model as a
basis for defining their inputs and outputs. Each tool descript,ion
has an uppliesTo att,ribut.e, a set of input aspect paths and a set of
output aspect paths. Consider t,he following.

m, r (. r , L T \ T T 7

t o o l momentum-calc {
appliesTo Body;
input mass ;
input velocity;
output momentum;

f . .

3
This definition describes a tool that yields the momentum of a body,
given its mass and velocity. The ellipsis is to indicate that there may
be other attributes for the tooI, such as execution information.

The “appliesTo” attribute identifies a dataspace type and spec-
ifies that the tool is capable of computing aspect values relative to
the associated kind of entity. Thus the “app1iesTo” type scopes the
tool’s inputs and outputs.

The ”appliesTo” type also determines the relative semantics of
the inputs and outputs. Recall from section 2 the example of two
area-computing tools with the same inputs and output, one for rect-
angles and one for ellipses. In this case, the t.wo tool descriptions
would be the same except one would have “appliesTo Rectangle”
and the other “appliesTo Ellipse.”

4 Plan Generation and Execution

As discussed above, a dataspace type defines a vocabulary of slot
names and the semantics of their interdependencies. A tool is spec-
ified with respect to some dataspace type and,.so, its semantics is
determined by the relative semantics of its inputs to outputs.

When a user uses CRA4DLE, he presents a problem which consists
of a problem type, a set of gzvens and a set of goals The problem type
is a dataspace type and each given and goal is an aspect path relative
to the problem type. During this process. the CRADLE repository
may be used to browse the set of types and their aspects. An esample
of a problem is as follows.

problem {
problemType Body;
g iven ve loc i ty ;
given geometryFile;

goal momentum;
given densi ty ;

Given a problem, t.he CRA4DLE plan generator attempts to find a
a plan, which is a directed acyclic graph of steps. Each step contains

t.he name of a t,ool and the set of prerequisite steps that it must
follow. The plan also indicates which steps yield one or more of the
goals. The plan must be such that each tool’s “appliesTo” type is a
supertype of (or possibly equal to) the problem type. Each input of
each tool must be among the problem’s givens or among the outputs
of a previous tool. Each of the problem’s goals must be among the

The full plan generation a!gorithl?i is too coiiipkx to present
here; so we give a quick summary. The algorithm uses backward
chaining and works back from the goals. At each point. it has a list.,
neededAspects, of aspects (really aspect paths) that need to be com-
puted and a list, producedAspects, of aspects that are given or com-
puted by some tool. Iteratively, it selects a needed aspect, sub_aoal,
and finds a tool, tool, whose “appliesTo” is a supertype of (or equal
to) the problem type and whose outputs contain subgoal. If there is
no such tool, it backtracks if possible. If there is more than one tool,
it tries e& i~ turn. TS h s ~ d l e the %ttness” piob!em l?iixitioried
in section 2, the algorithm also considers applying a too! to certain

the root. The outputs of tool are added to producedAspects and its
input*s are added to needed4spects. -41~0 a. step is allocated and added
to the plan. The iteration terminates when all neededAspects are in
producedAspects.

Plan execution is the process by which a plan is executed. It
follows the usual rules for executing a DAG. The dataspace model
is used to link outputs of one tool to the inputs of the nex?. As
mentioned earlier, the dataspace concept is logical and it is not nec-
essarily the case t,hat any real data structure directly implements
the dataspace, although some implementations may. The purpose of
the dataspace concept is to provide a conceptual model interrelating
types: tool descriptions, problem specification, plan generation and
plan executions.

As examples, one implementation may directly implement the
dataspace as a centralized hash table from which the tools ex%ract
t,heir inputs and into which they place their outputs. Another ini-
pleinenkation mal- instantiat.e a software component for each step
and use the fully qualified input and output names to hook together
ports. A third iiiiplementa,tioii might generate a script using a “man-

,.,An+,&- ,c C ^ . Y ^ i , - l
“UuyULio U L D V L I L G bUV1.

siib(.j- ataspaces - - -- of the original problem, in addition to applying it at

.

gled" form of the aspect paths to name files or script variables that
carry data produced by one step to later ones.

5 Status and Future Work

A CRADLE prototype has been implemented using a client-server
model with a protocol similar to web services. The server is in Java
and accesses a MySQL database containing tables for tooi and datas-
pace type descriptions. The type descriptions can be used by tool
specifiers and by users posing "probkms" to CRADLE. Type de-
scriptions are also used during plan generation to reason about in-
heritance and the types of subdataspaces. Tool descriptions are used
during plan generation and may also be used during plan execution
to obtain execution-related information.

For future research. we will look at applying a similar method-
ology to data collections and the tools that operate on them. As
RDF[3] is a popular standard for expressing and sharing machine
processable inforrr;stion CXI the w&, we xd! iw:cdiuatP o-"- ilring ----- RDF/-
XML121 in the client-server protocol. Also. we plan to look at vari-
ous extensions to the dataspace model, including arrays; parameter-
ized aspects (similar to methods) and parameterized types. Adding
machine-processable constraint expressions to dataspace types is an-
other potential avenue of investigation.

ilcknowledgments: We gratefully acknowledge the contributions of
Ken Gee and Karen McCann in the early discussions regarding t,he
direction and design of the project.

References

1. Global Grid Forum, Semantic Grid Working Group: The Semantic Grid \.'ision.
http://m-.semanticgrid.org/xrision

2. W3C: RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/rdf-
syntax-grammar/

3. W3C: Resource Description Framework (RDF): Concepts and Abstract. Syntax.
http://~-.w3.org/TR/rdf-concepts/

4. W3C: Web Services Architecture. h~tp://mmw.w3.org/TR/ws-arch/
5 . W3C: Web Seriices Description Language (U'SDL). h t t p : / / ~ - . u - 3 . o r g / T R / -

wsdl20/

